
CCA
Common Component Architecture

CCA Forum Tutorial Working Group
http://www.cca-forum.org/tutorials/

tutorial-wg@cca-forum.org

Common Component Architecture
Concepts

(a.k.a. “The Rest of the Overview”)

CCA ConceptsCCA
Common Component Architecture

2

Goals

• To complete and flesh out some of the CCA-
specific ideas that wouldn’t fit into the
Overview

CCA ConceptsCCA
Common Component Architecture

3

Components and Ports
in the Integrator Example

FunctionPort

MidpointIntegrator

IntegratorPort

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

IntegratorPort

Driver

GoPort

NonlinearFunction

FunctionPort

LinearFunction

FunctionPort

RandomGenerator

RandomGeneratorPort

PiFunction

FunctionPort

Dashed lines
indicate alternate

connections

Create different applications
in "plug-and-play" fashion

You’ve seen
this before

CCA ConceptsCCA
Common Component Architecture

4

CCA Concepts: Components

• Components are a unit of software composition
• Components provide/use one or more ports

– A component with no ports isn’t very interesting

• Components include some code which interacts with
the CCA framework
– Implement setServices method, constructor, destructor
– Use getPort/releasePort to access ports on other components

• The granularity of components is dictated by the
application architecture and by performance
considerations

• Components are peers
– Application architecture determines relationships

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

You’ve seen
this before

CCA ConceptsCCA
Common Component Architecture

5

Writing Components

• Components…
– Inherit from gov.cca.Component

• Implement setServices method to register ports this
component will provide and use

– Implement the ports they they provide
– Use ports on other components

• getPort/releasePort from framework Services object

• Interfaces (ports) extend gov.cca.Port

Much more detail later in the tutorial!

CCA ConceptsCCA
Common Component Architecture

6

Adapting Existing Code into
Components

• Suitably structured code (programs, libraries) should
be relatively easy to adapt to CCA

• Decide level of componentization
– Can evolve with time (start with coarse components, later

refine into smaller ones)

• Define interfaces and write wrappers between them
and existing code

• Add framework interaction code for each component
– setServices, constructor, destructor

• Modify component internals to use other components
as appropriate
– getPort, releasePort and method invocations

CCA ConceptsCCA
Common Component Architecture

7

CCA Concepts: Frameworks
• The framework provides the means to “hold”

components and compose them into applications
– The framework is often application’s “main” or “program”

• Frameworks allow exchange of ports among
components without exposing implementation details

• Frameworks provide a small set of standard services
to components
– BuilderService allow programs to compose CCA apps

• Frameworks may make themselves appear as
components in order to connect to components in
other frameworks

• Currently: specific frameworks support specific
computing models (parallel, distributed, etc.).
Future: full flexibility through integration or
interoperation

You’ve seen
this before

CCA ConceptsCCA
Common Component Architecture

8

Writing Frameworks
• There is no reason for most people to write

frameworks – just use the existing ones!
• Frameworks must provide certain ports…

– ConnectionEventService
• Informs the component of connections

– AbstractFramework
• Allows the component to behave as a framework

– BuilderService
• instantiate components & connect ports

– ComponentRepository
• A default place where components are found

– Coming soon: framework services can be implemented in
components and registered as services

• Frameworks must be able to load components
– Typically shared object libraries, can be statically linked

• Frameworks must provide a way to compose
applications from components

CCA ConceptsCCA
Common Component Architecture

9

Typical Component Lifecycle

• Composition Phase
– Component is instantiated in framework
– Component interfaces are connected appropriately

• Execution Phase
– Code in components uses functions provided by another

component

• Decomposition Phase
– Connections between component interfaces may be broken
– Component may be destroyed

In an application, individual components may be in
different phases at different times

Steps may be under human or software control

We’ll look at actual
code in next

tutorial module

CCA ConceptsCCA
Common Component Architecture

10

User Viewpoint:
Loading and Instantiating Components

create Driver Driver
create LinearFunction LinearFunction
create MonteCarloIntegrator MonteCarloIntegrator

• Details are framework-specific!

• Ccaffeine currently provides both
command line and GUI approaches

• Components are code (usu.
library or shared object) +
metadata

• Using metadata, a Palette of
available components is
constructed

• Components are instantiated
by user action (i.e. by
dragging from Palette into
Arena)

• Framework calls component’s
constructor, then setServices

CCA ConceptsCCA
Common Component Architecture

11

connect Driver IntegratorPort MonteCarloIntegrator IntegratorPort
connect MonteCarloIntegrator FunctionPort LinearFunction FunctionPort
…

User Connects Ports
• Can only connect uses &

provides
– Not uses/uses or

provides/provides
• Ports connected by type, not

name
– Port names must be unique

within component
– Types must match across

components
• Framework puts info about

provider of port into using
component’s Services object

CCA ConceptsCCA
Common Component Architecture

12

Composition PhaseComposition Phase

Framework Mediates Most
Component Interactions

Integrator

Integrator code
getPort(Fun)

y=Fun(x)
releasePort(Fun)

Framework interaction code
constructor setServices destructor

CCA.Services
provides Result

uses Fun

LinearFunction

Function code
Fun(x) = 3 * x + 17

CCA.Services
provides Fun

Framework interaction code
constructor setServices destructor

1

2

1’

2’3

5

46

Execution Phase
* Method invocation need not
be mediated by the framework!

*

CCA ConceptsCCA
Common Component Architecture

13

Component’s View of Instantiation
• Framework calls component’s

constructor
• Component initializes internal

data, etc.
– Knows nothing outside itself

• Framework calls component’s
setServices
– Passes setServices an object

representing everything “outside”
– setServices declares ports

component uses and provides
• Component still knows nothing

outside itself
– But Services object provides the

means of communication w/
framework

• Framework now knows how to
“decorate” component and how it
might connect with others

FunctionPort

MonteCarloIntegrator

IntegratorPort

RandomGeneratorPort

MonteCarloIntegrator

Integrator code

Framework interaction code
constructor setServices destructor

CCA.Services
provides IntegratorPort

uses FunctionPort,
RandomGeneratorPort

CCA ConceptsCCA
Common Component Architecture

14

Component’s View
of Connection

• Framework puts info
about provider into user
component’s Services
object
– MonteCarloIntegrator’s

Services object is aware
of connection

– NonlinearFunction is
not!

• MCI’s integrator code
cannot yet call functions
on FunctionPort

NonlinearFunction

Function code

CCA.Services
provides FunctionPort

Framework interaction code
MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

CCA ConceptsCCA
Common Component Architecture

15

Component’s View of Using a Port

MonteCarloIntegrator

Integrator code

Framework interaction code

CCA.Services
…, uses FunctionPort

(connected to NonlinearFunction
FunctionPort), …

• User calls getPort to obtain
(handle for) port from Services
– Finally user code can “see”

provider
• Cast port to expected type

– OO programming concept
– Insures type safety
– Helps enforce declared

interface
• Call methods on port

– e.g.
sum = sum + function->evaluate(x)

• Release port

CCA ConceptsCCA
Common Component Architecture

16

CCA Concepts: “Direct Connection”
Maintains Local Performance

• Calls between components equivalent to a C++
virtual function call: lookup function location, invoke it
– Cost equivalent of ~2.8 F77 or C function calls
– ~48 ns vs 17 ns on 500 MHz Pentium III Linux box

• Language interoperability can impose additional
overheads
– Some arguments require conversion
– Costs vary, but small for typical scientific computing needs

• Calls within components have no CCA-imposed
overhead

• Implications
– Be aware of costs
– Design so inter-component calls do enough work that

overhead is negligible

You’ve seen
this before

CCA ConceptsCCA
Common Component Architecture

17

How Does Direct Connection Work?

• Components loaded into separate namespaces in the
same address space (process) from shared libraries

• getPort call returns a pointer to the port’s function
table

• All this happens “automatically” – user just sees high
performance
– Description reflects Ccaffeine implementation, but similar or

identical mechanisms are in other direct connect fwks

• Many CORBA implementations offer a similar
approach to improve performance, but using it
violates the CORBA standards!

CCA ConceptsCCA
Common Component Architecture

18

What the CCA isn’t…
• CCA doesn’t specify who owns “main”

– CCA components are peers
– Up to application to define component relationships

• “Driver component” is a common design pattern

• CCA doesn’t specify a parallel programming
environment
– Choose your favorite
– Mix multiple tools in a single application

• CCA doesn’t specify I/O
– But it gives you the infrastructure to create I/O components
– Use of stdio may be problematic in mixed language env.

• CCA doesn’t specify interfaces
– But it gives you the infrastructure to define and enforce them
– CCA Forum supports & promotes “standard” interface efforts

• CCA doesn’t require (but does support) separation of
algorithms/physics from data

You’ve seen
this before

CCA ConceptsCCA
Common Component Architecture

19

What the CCA is…

• CCA is a specification for a component environment
–Fundamentally, a design pattern
–Multiple “reference” implementations exist
–Being used by applications

• CCA increases productivity
–Supports and promotes software interopability and reuse
–Provides “plug-and-play” paradigm for scientific software

• CCA offers the flexibility to architect your application as
you think best

–Doesn’t dictate component relationships, programming models, etc.
–Minimal performance overhead
–Minimal cost for incorporation of existing software

• CCA provides an environment in which domain-specific
application frameworks can be built

–While retaining opportunities for software reuse at multiple levels

You’ve seen
this before

CCA ConceptsCCA
Common Component Architecture

20

Concept Review
• Ports

– Interfaces between components
– Uses/provides model

• Framework
– Allows assembly of components into applications

• Direct Connection
– Maintain performance of local inter-component calls

• Parallelism
– Framework stays out of the way of parallel components

• MxN Parallel Data Redistribution
– Model coupling, visualization, etc.

• Language Interoperability
– Babel, Scientific Interface Definition Language (SIDL)

You’ve seen
this before

